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Metal matrix composites (MMCs) represent a unique class of materials with an ability to 
blend the properties of the ceramics with those of metals/alloys. The incorporation of hard 
and brittle ceramics phase is widely carried out in order to improve on the strength and wear 
properties of metallic matrices. In related studies carried out on spray-processed materials, it 
was observed that the incorporation of the ceramic particulates need not always increase the 
strength of metallic matrix unless they exceed a certain critical volume fraction. In order to 
explain these rather unusual results, a theoretical model was formulated to determine the 
critical volume fraction that may be required in order to realize the improvement in the 
ultimate tensile strength of the metallic matrices. The model proposed here is based on the 
equivalent inclusion method as related to the micromechanics of composites. The results 
derived from the model are interpreted with a view to establishing the link between the 
theoretical results obtained with the experimental findings. 

1. Introduction 
Metal matrix composites (MMCs), due to their unique 
ability to combine the properties of a ductile metallic 
matrix with that of hard and brittle ceramic reinforce- 
ment, have been actively sought to cater for a spec- 
trum of applications Eli. One such application area 
that is presently under intensive investigation is to 
replace the conventional materials with metal matrix 
composites in the structural applications primarily 
related to automobiles and aerospace sectors {2]. In 
order to qualify for such applications, it is imperative 
that metal matrix composites should exhibit superior 
strength without significant loss in ductility over their 
monolithic counterpart. Various strengthening mod- 
els have been proposed to explain the strengthening 
mechanism and predict the strength of MMCs E3-7]. 
One of the simplest ways to estimate the strength of 
a composite material is to use the rule of mixtures. 
This rule implies that the strength of the composite 
material will always be higher than that of the matrix 
material when the volume fraction of the ceramic 
reinforcement is greater than zero. However, it has 
been shown by various investigators that the addition 
of hard and brittle ceramic phase in the metallic 
matrix may not always increase the strength [8-11]. 
Ibrahim et al. [10], for example, have shown that 
the strength of metal matrix composites (6061/SIC) 
increased appreciably over that of the monolithic 
counterpart only when the volume fraction of the 
reinforcing particulates was increased over 28%. 
Friend [12] suggested that unless there is a critical 
volume fraction of the reinforcing phase in the matrix, 
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the load transfer between the matrix and the reinforce- 
ment will not be effective and a concomitant strength 
improvement may not be realized. In view of these 
findings it becomes imperative to know, a priori, the 
minimum volume fraction of the reinforcement that 
may be required to realize the strength improvement. 
A theoretical model is therefore proposed in the pres- 
ent study. This model considers that with small vol- 
ume fraction, the particulates act as imperfection in 
the matrix and cause high interracial stress in the 
material. As a result, failure occurs at a stress level 
lower than a unreinforced metallic matrix can sustain. 

Accordingly, the present study aimed to establish 
first the failure mode of the metallic matrix reinforced 
with hard ceramic particulates using inhomogeneity 
solution, and second to formulate the model incorpor- 
ating the failure criterion established in the first part, 
to compute the minimum volume fraction that may 
be required to realize a strength improvement of the 
metallic matrix. Particular emphasis was placed in 
correlating the theoretical findings with the experi- 
mental results established previously. 

2. The model 
2.1. Failure mechanism and inhomogeneity 

solution 
Particulate-reinforced metal matrix composites may 
exhibit different failure mechanisms, depending on the 
type of reinforcement used. For example, aluminium- 
based metal matrices can be reinforced by either soft 
particulates or hard particulates depending on the end 
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Figure 1 Schematic illustration showing failure mechanism asso- 
ciated with hard particulates in a metal matrix composite: (a) crack 
initiation at two poles, and (b) crack propagation along the 
matrix/particulate interface. 

eigenstrain. On the other hand, an inhomogeneity is 
defined as a sub-domain with different elastic con- 
stants from that of the matrix. The equivalent inclu- 
sion method connects the inhomogeneity and inclu- 
sion by introducing proper eigenstrain. The elastic 
constants of the matrix, Cijkf, and the inhomogeneity, 
Cijkz, can be correlated with the eigenstrain, a~*, the 
strain disturbance, eu, and the homogeneous strain in 
the absence of the inclusion, ao, as 

, o - ( 1 )  

The total stress acting at any given point, ~]), is given 
by the following equation 

= G ~ + ( 2 )  

where c~ ~ is the homogeneous stress in the absence of 
the inclusion and G~j is the stress disturbance. These 
can further be expressed as 

use of the material [13, 14]. In related studies [15], it 
has been reported that a crack initiates at different 
sites with respect to the harder and softer particulate 
in the matrix under uniform far-field tensile loading. 
According to the aforementioned analysis, for soft 
inhomogeneity, the crack was shown to initiate at the 
equator due to the high stress concentration in that 
place. On the other hand, for a harder inhomogeneity, 
it was predicted that the crack will be initiated at two 
poles as a result of the high interracial stresses (see 
Fig. la). Because, in the present study, an AI-Cu 
matrix reinforced by SiC particulates was investigated, 
the crack initiation mode associated with harder in- 
homogeneity was considered. Once initiated, the crack 
can possibly propagate in two directions: (a) into the 
ceramic reinforcement, (b) along the matrix/partic- 
ulate interface. The propagation of the crack into the 
ceramic reinforcement is precluded, owing to the high 
strength of SiC particulates as well as the compressive 
stresses acting on the particulates under the given 
loading conditions. As a result, the crack will tend to 
propagate along the matrix/particulate interface 
(Fig. lb). This suggestion is consistent with the studies 
of other investigators who observed that ~ 65% of the 
particulates in a spray-processed metal matrix com- 
posite debonded when the composite samples were 
subjected to 1% tensile plastic strain [3]. As the deb- 
onding continues, the load transfer from the metallic 
matrix to ceramic particulates will decrease rapidly, 
eventually leading to a catastrophic failure. Based on 
the above discussion, the interracial stress, 
~s~3(0, 0, _+ a), is identified to be responsible for the 
failure of MMC. 

In order to find the maximum interracial tensile 
stress, ~s~3(0, 0, _+ a), the solution of a spherical in- 
homogeneity embedded in an infinitely extended iso- 
trophic material under uniform far-field tensile 
loading is considered following Eshelby's equivalent 
inclusion method [16]. In the present formulation, 
the terminology described elsewhere [17] will be 
used. An inclusion is defined as a sub-domain with the 
same modulus as that of the matrix and non-zero 

, r  = Cuk, .k  ~ (3) 

~ij = Ci jk l (ek l -  e.*) (4) 

Equation 1 implies that the stress field inside the 
inhomogeneity can be replaced by the stress field 
produced by an inclusion assigned with a proper 
eigenstrain. In order to compute eigenstrain from 
Equation 1, the Eshelby inclusion solution is used. 
According to Eshelby's solution [16] 

eij = Sijkt~,* (5) 

where Sijkl is the Eshelby tensor. For a spherical inclu- 
sion embedded in an isotropic medium, the Eshelby 
tensor is given as [17] 

7 - -  5v  
S l l l l  = $2222 = $3333 - -  15(1 -- v) 

5v -- 1 
81122 ~--- $2233 ~-- S3311 - 

15(1 - v) 

4 - 5v 
S1212 ~- $2323 = 83131 - (6) 

15(1 - v) 

where v is Poisson's ratio. 
With the eigenstrains, the stress distribution inside 

the inhomogeneity can be expressed using Equations 
4 and 5 as 

16 5v + 1 
~11 = - g 1 5 ( 1  -- v) ~.1 - 2g15(1 - v) ~.2 

5 v + 1  
-2bt15(1 _ v) ~.3 

7 - .  5v 
cr12 = 2g.15(1 _ v)~*2 (7) 

All other stress components can be obtained by the 
cyclic permutation of 1, 2 and 3. In the present ap- 
proach, only uniform far field uniaxial loading in 
the x3-direction (G ~ is considered. The eigenstrain 
as a result of this loading can be expressed using 
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equations 1,3 and 5 as 

~T1 = ~'2 = ( 5__ A 
- 2 g  + 

1 o 
z*3 = (~A+~-~B)cy 

where A and B are expressed as 

1 B ~  cl ~ 
3K / 

(8) 

(~* - u)(1 - v) 
A = 

(5v - 7)bt -- (8 - 10v)bt* 

(K* - K)(1 - v) 
B = 

(4v -- 2)K -- (1 + v)K* 
(9) 

Using the correlation of bulk modulus, K, and shear 
modulus, g, with Young's modulus, E, and Poisson's 
ratio, v 

and 

E 
K - (10a) 

3(1 - 2v) 

E 
(10b) bt - 2(1 + v) 

the total stress inside the inhomogeneity using Equa- 
tions 2, 7 and 8 can be written as 

~I~ = ~ 2  = ( - F + G ) ~  ~ 

~ h  = (2F + G)o  ~ (11) 

where F and G are expressed as 

- ~) 
+ (hv 7)(~* _- f6_v),, 1 F = ~ I1  ( 5 v - 7 ) ,  

1 1 (4v - 2)(K* - K) 1 
G = ~ 1 + ( 4 v -  2)g -  (1 + v)K* (12) 

It may be noted that the stress inside the inhomo- 
geneity is uniform. Therefore, the maximum interracial 
tensile stress, c~T3(0, 0, _+ a), is equal to crY3 inside the 
inhomogeneity. Introducing a stress coefficient, 1(, as 

K = 2F + G (13) 

the expression for the interracial stress shown in Equa- 
tion 2 can be written as 

cY~3 = ~:cY ~ (14) 

Using the material's constant values from Table I, the 
value of ~c was found to be 1.66. Equation 14 implies 
that the stress at the particulate/matrix interface will 
always be higher when compared to the far field load- 
ing for a metallic matrix reinforced with harder and 
stronger particulates. 

Regarding the effect of volume fraction, it may be 
noted that for the same amount of far-field loading, 
the increase in volume fraction of the particulates will 
decrease the stress level that applies to each of the 
reinforcement particulates. This can be rationalized 
by analysing the average stress level in both the matrix 
and the particulates for a given volume fraction 
using the Mori-Tanaka theory [17]. According to 

TABLE I Properties of reinforcement, matrix and composite 
material 

Materials E(GPa) v cr (MPa) 
[_18] [18] [,,19] 

Matrix (A1-Cu) 73 0.33 410 
Reinforcement (SIC) 450 0.17 - 
Composite (Vf = 11.1%) - - 422 

the Mori-Tanaka theory, the average stresses in the 
matrix, <(Yij>M, and in the particulates, (chj)e, are 
related to the volume fraction as follows 

< % 5 ~  - v f ~ b  + ~o  (15) 

((sij)e = (1 - Yf)(yi~ -{- (yO (16) 

where ~i~ is the stress calculated for a single partic- 
ulate present in an infinite matrix under a uniform 
far-field loading, cr ~ Equations 15 and 16 imply that 
with an increase in number of particulates (and hence 
the volume fraction) higher far-field loading would be 
required to cause crack initiation and propagation. 

The formulation in the next section takes into con- 
sideration the findings of the inhomogeneity solution 
to compute the minimum volume fraction of the 
ceramic particulates required to realize a strength 
improvement of the MMC. 

2.2. Formulation for critical volume fraction 
In this section, a simple model is developed to explain 
the decrease in the ultimate tensile strength of the 
metal matrix composites reinforced with very small 
volume fraction of particulates and to predict the 
critical volume fraction of the particulates required in 
order to realize an improvement in strength of the 
MMCs when compared to that of the metallic matrix. 
The results of the model will simultaneously be ana- 
lysed with the experimental observations. The formu- 
lation of the model is based on the following 
assumptions: (a) the reinforcing particulates are of 
spherical shape (aspect ratio = 1); (b) the reinforcing 
particulates act as load carriers until the onset of the 
debonding; and (c) the reinforcing particulates are 
uniformly distributed in the matrix. 

The strength of MMCs may be estimated on the 
basis of the law of mixture as [12] 

~o = %Vf + C~*m(l -- Vf) (17) 

where Vf is the volume fraction of particulates, cy~ the 
composite strength, % the strength of the reinforcing 
particulate, and cy~ the limiting composite strength 
(Vf - ,  0). It may be noted that 

f(Ymu Vf = 0 

(so = < ( ~ *  Vf ~ 0 (18) 

where C~mu represents the ultimate tensile strength of 
the monolithic matrix material, while c~* represents 
the ultimate tensile strength of the reinforced material 
with the volume fraction of ceramic reinforcement 
approaching zero. 
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Figure 2 Schematic diagram showing the inhomogeneity problem 
for a composite with V e ~ 0. 
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Figure 3 Schematic diagram showing the variation in composite 
strength as a function of volume fraction of the reinforcement. 

In view of the discussions made earlier regarding 
the interfacial crack initiation and propagation for 
a metallic matrix reinforced with harder particulates, 
and the supporting experimental observations made 
by various investigators [3, 13, 19], Equation 17 is 
modified to take into account the strength of the 
interface as the primary failure-governing mechanism. 
Hence, replacing % by ~i 

0"r = o ' iV  e At- cy*(1 - Vf) (19) 

where ~i is the interracial bond strength between the 
soft and ductile matrix and the hard and brittle rein- 
forcement, It may be noted that when % is reached at 
the interface, the maximum stress in the particulate 
also reaches (sl. 

(~* can be determined by using, without losing gen- 
erality, the configuration shown in Fig. 2. In other 
words, (s* is the failure tensile stress of an infinitely 
extended matrix material with an embedded spherical 
ceramic particulate. It may be noted that for Ve --+ O, 

each reinforcing particulate is located far away from 
each other and hence the interparticulate interactions 
and the stress disturbance at points in between partic- 
ulates can be neglected. Considering that failure oc- 
curs at the onset of the interfacial debonding, the 
theoretical value of ~* and its relation to ~i can be 
determined using Equation 14 as 

(yT3 ~--- K(:Y*m : (Yi (20) 

Substituting the value of cy* from Equation 20 into 
Equation 19, we obtain 

cr~ = %Vf + oh(1 - Vf) (21) 
K 

Now using the volume fraction (Vf = 11.1%) of the 
particulates in the MMC, the theoretically calculated 
value of ~:(~: = 1.66) and the composite strength 
shown in Table I, the interfacial strength, oh, was 
found to be 653 MPa. It may be noted that an inde- 
pendent estimate of ch was not used in the present 
study because the interfacial behaviour differs 
strongly as a function of processing type, chemical 
composition of the matrix, secondary processing para- 
meters and the heat treatment. Moreover, experi- 
mental determination cannot possibly be carried out 
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as a result of discontinuous nature of the reinforce- 
ment and a relatively very small size of SiC partic- 
ulates (3 btm) used in the present study. 

Substituting the values of ~i and K into Equation 
20, the ultimate tensile stress of the composite with 
Vf--+ 0 is determined as (s* = 393 MPa. It may be 
noted that this value is lower than the ultimate tensile 
strength of the matrix material (sin = 410 MPa (see 
Table I). The results hence suggest that a critical 
volume fraction of the particulates is required for the 
strength of MMC to be equal to that of the matrix 
material (Fig. 3). 

Now in the limit, when the volume fraction of rein- 
forcement, Vf, equals the critical volume fraction, Vcru, 
the strength of the composite, (so, will be equal to that 
of the unreinforced matrix material, Crmu. Hence we 
can rewrite Equation 21 as 

(Ymu : (3"igcrit -[- o ' i (  1 - -  gcrit) (22) 
K 

which can again be rearranged as 

V~rit - ~ : ~ . u  - ch (23) 
(~c-  1)% 

Substituting the values of (sl, (~mu, and ~: in Equation 
23 we obtain a critical volume fraction Vcru = 6.4% 
for the SiC particulate-reinforced AI-Cu matrix com- 
posite. The results of the above calculation are listed in 
Table II. 

It may be noted that a small difference (4.7%) be- 
tween the calculated (6.4%) and the actual volume 
fraction (11.1%) is consistent with the marginal im- 
provement in the strength that was experimentally 
observed. The computed value of the critical volume 
fraction, however, should be considered as a lower- 
bound estimate, because, in practice, a completely 
uniform distribution of, reinforcing particulates in the 
metallic matrix is difficult to achieve, and hence there 
are always clusters or agglomeration sites present in 
the matrix which promote early crack nucleation. The 
calculated value of the critical volume fraction, how- 
ever, provides an insight into the minimum volume 
fraction of reinforcement that is required to realize 
an improvement in the strength in discontinuously 



T A B L E  II Input parameters and results of the model 

Variable Unit Value 

~{ MPa 653 
Crm, M Pa 410 
c~* MPa 393 

Vorit % 6.4 

reinforced MMCs. Moreover, inspection of Equation 
23 reveals some interesting trends. First Equation 23 
suggest that the higher the interracial strength the 
lower is the volume fi'action of the ceramic reinforce- 
ment that may be required to realize a strength im- 
provement in discontinuously reinforced MMCs. This 
observation is true, because a high value of % is 
indicative of a more effective matrix-reinforcement 
load transfer. Hence, the MMC will need a smaller 
volume fraction of reinforcement relative to one with 
a poorly bonded reinforcement (i.e. low ~i). Secondly, 
Equation 23 suggests that an increase in the matrix 
strength, CYm,, is accompanied by an increase in critical 
volume fraction. This is consistent with the results 
reported by McDanels [20] for 20 vol % SiCw/A1 in 
which he noted that the strength improvement that 
was realized in a 6061 MMC was higher than that 
noted for 2124 and 7075 MMCs, consistent with the 
lower matrix strength of the 6061 alloy relative to 
alloys 2124 and 7075. 

3. Conclusions 
1. For a ductile metallic matrix reinforced with 

hard particulates subjected to far-field uniaxial load- 
ing, the matrix/particulate interface failure mechanism 
will dominate as a result of high interfacial stress at the 
two poles. 

2. The stress at the matrix/particulate interface may 
exceed the interfaeial debonding stress for Vf --, 0 even 
when the far-field loading stress is lower than the 
strength of the metallic matrix. 

3. Preliminary results obtained for the strengthen- 
ing behaviour, on the basis of a simple numerical 
formulation, suggest that a minimum of 6.4 vol % SiC 
particulates is required in order to realize a strength 

improvement for the A1-Cu matrix material investi- 
gated in this study. 
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